
Introduction to
Android Application

Pentesting

Mohammed Shine

Hello!!

● Security Engineer

● Bug Bounty Hunter

● Former SOC Analyst

● Photographer |

instagram.com/mohammed_shine

Some Statistics

● 25% OF MOBILE APPS INCLUDE AT LEAST ONE HIGH RISK SECURITY FLAW.

● 35% OF MOBILE COMMUNICATIONS ARE UNENCRYPTED.

● MOBILE MALWARE INCIDENTS HAVE DOUBLED (JOKER)

What we hope to cover today

● ANDROID
● APK
● VULNERABILITIES
● TOOLS
● SAST
● DAST
● POC

Android Architecture

What is an APK?

MYAPP.APK

├── ANDROIDMANIFEST.XML

├── META-INF/
├── CLASSES.DEX

├── LIB/
├── RES/
└── RESOURCES.ARSC

Tools

• A ROOTED ANDROID DEVICE/EMULATOR AND
ADB TOOLS

• AVD, GENYMOTION…

• ADB TOOLS

• A WEB PROXY TOOL

• CHARLES PROXY, BURPSUITE

• DECOMPILING TOOLS

• APK TOOL

• DEX2JAR
• JD GUI
• MOBSF

Methodology

• INTERCEPT THE TRAFFIC FROM APPLICATION TO IT’S SERVER

• TEST SERVER SIDE ACCESS CONTROLS

• PRIVILEGE ESCALATION BY MANIPULATING PARAMETERS

• AUTHENTICATION FLAWS

• DECOMPILE THE ANDROID APPLICATION

• IDENTIFY FLAWS IN THE NATIVE CODE

• BYPASS SECURITY CONTROLS LIKE SSL PINNING

• CHECK ANDROID LOCAL STORAGE FOR SENSITIVE INFORMATION LEAKAGE

• IN APPLICATION DIRECTORIES

• LOCAL DATABASES

• LOGS

Methodology(Contd.)

VULNERABILITIES

OWASP TOP 10

Improper Platform Usage(M1)

Misuse of a platform feature or failure to use platform

security controls.

Might include:

• Android intents,

• Misuse of Fingerprint Sensors,

• Misuse of other security controls.

• Ex. Citrix Worx App

Insecure Data Storage(M2)

Insecure Communication

•Poor handshaking/weak negotiation, (f. ex. lack of certificate pinning)

•Incorrect SSL versions,

•Cleartext communication of sensitive assets

•HTTP instead of HTTPS.

Insecure Authentication

•Weakness in session management

•Lack of rate limiting

•Attacking client side javascript components

Phases

Dynamic Analysis

Information Gathering

SAST

Static Application Security Testing

● Reversing

Jadx - https://github.com/skylot/jadx/releases/tag/v1.1.0

JdGUI - https://github.com/java-decompiler/jd-gui

APKTool - https://github.com/iBotPeaches/Apktool

DEX2JAR - https://github.com/pxb1988/dex2jar

https://github.com/skylot/jadx/releases/tag/v1.1.0
https://github.com/java-decompiler/jd-gui
https://github.com/iBotPeaches/Apktool

STRINGS.XML

● A string resource provides text strings for your application

with optional text styling and formatting.

● There are three types of resources that can provide your

application with strings:

○ String

○ String Array

○ Quantity Strings

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="string_name">text_string</string>

</resources>

POC:1

POC2: LevelUP CTF

POC

POC(Contn.)

The AndroidManifest.xml file describes essential information
about your app to the Android build tools, the Android operating
system, and Google Play. It plays an important role for every
android application. In this file the android developer determines
the permissions that the application will require, actions that the
application can perform and general other activities

ANDROIDMANIFEST.XML

● Package Name

● The components of the app, which include all activities,

services, broadcast receivers, and content providers.

● The permissions that the app needs in order to access

protected parts of the system or other apps.

● The hardware and software features the app requires, which

affects which devices can install the app from Google Play.

ANDROIDMANIFEST.XML

DEBUGGABLE FLAG

● The android:debuggable attribute defines whether the

application can be debugged or not.

● If an Application is marked as debuggable then an attacker

can access the application data by assuming the privileges of

that application and can even run arbitrary code under that

application permission.

● In the case of non-debuggable application, attacker would

first need to root the device to extract any data.

CODE

<application

android:debuggable=”true”

</application>

ALLOWBACKUP FLAG

● The android:allowBackup attribute defines whether

application data can be backed up and restored by a user who

has enabled usb debugging.

● If backup flag is set to true, it allows an attacker to take the

backup of the application data via adb even if the device is not

rooted. Therefore applications that handle and store sensitive

information such as card details, passwords etc.

● should have this setting explicitly set to false because by

default it is set to true to prevent such risks.

CODE

<application

android:allowBackup=”true”

</application>

ADB

The Android Debug Bridge (ADB) is a versatile command line tool

that lets you communicate with and control an Android-powered

device over a USB link from a computer. It comes along with other

useful tools and code bundled with the Android Software

Development Kit (SDK).

ADB Commands

● adb shell - launches a shell on the device.

● adb push <local> <remote> - pushes the file <local> to

<remote>

● adb pull <remote> [<local>] - pulls the file <remote> to

<local>

● adb logcat - allows you to view the device log in real-time.

● adb install <file> - installs the given .apk file to your device

ADB BACKUP

Read Sensitive Data in a non-rooted phone.

ADB LOGCAT

MOBSF

DeepLinks

● Deep linking is a method for launching a native mobile

apps via a link

● It connects a unique URL to a definite action in mobile

app, seamlessly linking to relevant content.

<data android:host="user" android:pathPrefix="/"
android:scheme="abcd"/>
<data android:host="user" android:pathPrefix="/"
android:scheme="abcde"/>

<html>
Demo
</html>

abcd://user/user-id or abcde://user/user-id

PoC

coin://<attacker’s bitcoin address>/amount

Firebase

● Firebase is a Backend-as-a-Service — BaaS — that started

as a YC11 startup and grew up into a next-generation

app-development platform on Google Cloud Platform.

● It’s a DataBase, Authentication, File Storage(CDN), Fully

Functional App Platform

● URL Location: res/values/strings.xml

Firebase

redacted.firebaseio.com/.json

Not Vulnerable

Exploit

Credits: Muhammed Khizer Javed

Output

DAST

● Dynamic Application Security Testing

● Black Box

● Running Application is required

Dynamic Analysis

Genymotion

Proxy

Network Settings

Capturing Request

Installing Burp’s CA Certificate

● Open http://burp or http://burpsuite in the mobile’s web browser

● Rename the certificate with the extension .cer

● Open Settings > User Certificates > Install from device storage

http://burp
http://burpsuite

SSL Pinning

● SSL Pinning is a technique that is used in the client side

to avoid man-in-the-middle attack by validating the

server certificates again even after SSL handshaking.

The developers embed (or pin) a list of trustful

certificates to the client application during

development, and use them to compare against the

server certificates during runtime.

SSL Pinning

Proof of Concept

PoC

Send OTP

PoC

1234

PoC(OTP Leak)

PoC(Email Verification)

ThanK y0U !!!

