Client-Side Javascript
Vulnerabilities - Demystified



Agenda:
DOM XSS

PostMessage Misconfiguration

Parameter Pollution

XSLeak



Same Origin Policy:

Same Origin Policy is an important concept in the web application security model.
This policy determines the access to data in between web applications.

http://store.company.com/somreandom.html

A AL

and port.
he same protocol, host

and port.

https://store.company.com/secure.html Qther protocol.
http://store.company.com:81/dir/etc.html
http://news.company.com/dir/other.htmi

he same protocol, host
http://store.company.com/dir2/other.html

http //store.company.com/dir/inner/another.ht




Why does Client-side security matters?

Client Side vulnerability takes advantage of an authenticated session of a legitimate

user.

Having arbitrary Javascript execution lets attacker to do (almost) anything on behalf
of an authenticated user.

Example:

Modify Email/Password, steal your personal information and anything you can do
from your browser.






What is DOM XSS?

DOM XSS vulnerabilities arises when Javascript takes data from attacker controllable
source and pass it to sink.

What are sinks ?

Sinks, on the other hand are the points in the flow of data at which the untrusted input
gets outputted on the page or executed by JavaScript within the page.



Example:

URL: https://example.com/welcome.html

<html>

</html>

<body>
<script>

</script
</body>

var urlParams = new URLSearchParams(window.location.search);
//Creates an object containing URL parameters

var name;

if (urlParams.has("name"))

var name=urlParams.get("name");

//Assigns the value of name parameter to variable name

document.body.innerHTML="Welcome "+name
// Display Greeting without name
>




URL: https://example.com/welcome.html?name=cat https://example.com/welcome html?name=dog

Welcome dog

Welcome Cat




What if we input valid HTML code as name?

https://example.com/welcome html?name=<img src=luttapi.jpg />

Welcome




What about JS ?

https://example.com/welcome html?name=<img src=x onerror=alert(“Luttapi”) />

Welcome E




Similar Sinks:

Sink Name Property susceptible to DOM-based XSS

Execution Sink eval
setTimeout

setInterval

HTML Element Sink document .write
document.writeln
innerHTML

outerHTML

Set Location Sink location

location.href




Why did it happen and how can you fix?

SANITIZE the data before you use it !

npm version Build and Test ‘passing downloads 3.3M/month minified 15.7 KB gzipped 6.4 KB dependents 13834

DOMPurify is a DOM-only, super-fast, uber-tolerant XSS sanitizer for HTML, MathML and SVG.

It's also very simple to use and get started with. DOMPurify was started in February 2014 and, meanwhile, has
reached version 2.2.0.

DOMPurify is written in JavaScript and works in all modern browsers (Safari (10+), Opera (15+), Internet Explorer
(10+), Edge, Firefox and Chrome - as well as almost anything else using Blink or WebKit). It doesn't break on MSIE6
or other legacy browsers. It either uses a fall-back or simply does nothing.

Our automated tests cover 15 different browsers right now, more to come. We also cover Node.js v12, vi3, v14.0.0,
running DOMPurify on jsdom. Older Node.js versions are known to work as well.

DOMPurify is written by security people who have vast background in web attacks and XSS. Fear not. For more
details please also read about our Security Goals & Threat Model. Please, read it. Like, really.

What does it do?

DOMPurify sanitizes HTML and prevents XSS attacks. You can feed DOMPurify with string full of dirty HTML and it
will return a string (unless configured otherwise) with clean HTML. DOMPurify will strip out everything that contains
dangerous HTML and thereby prevent XSS attacks and other nastiness. It's also damn bloody fast. We use the
technologies the browser provides and turn them into an XSS filter. The faster your browser, the faster DOMPurify will




PostMessage
Misconfiguration



What are PostMessage and why does it exist?
n

The window.postMessage() method safely enables cross-origin communication between

wWindow objects; e.g., between a page and a pop-up that it spawned, or between a page and
an iframe embedded within it.

targetWindow.postMessage(message, targetOrigin, [transfer]);




SOP restriction:

This is https://example.com

This is https://othersite.com




What could go wrong?

Case 1:

If you're rendering the input data from postMessage without origin check, it could lead
to XSS

Case 2:

If you didn’t specify the target domain to send message, there are chances for it to be
stolen. Which could leak potentially sensitive information.



Getting XSS with postMessage

https://[www.example.com/recieve. html

<html>
<body bgcolor- white">
fihis is https //othersite.com
<hr>
<div id="messageDOM"></div>
<script>
window.addEventListener("message" ,respond);
function respond(message){
var area=document.getElementById("messageDOM");
area.innerHTML="Recieved Message: ‘+message data;
¥
</script>
</body>

</html>



Harmless Usage

https://[www.harmlesswebsite.com/sendmessage.html

<html>
<body>
<script>
var childwin=window.open( , I);
setTimeout(()=>childwin.postMessage( : ),3000)
</script>
</body>
</html>

This is https://example.com

Recieved Message: Junk Message




Fire XSS again!

https://attacker.com/exploithtml

<html>

<body>

<script>

var ChildWin=Wind0W.0pen(”Hf’p%:.féherpie.tﬂVfreylevelh7V"“);

setTimeout(()=>{childWin.postMessage('<img src=x onerror=alert( attacked )>',"+*")},3000)

</script>

</body>
</html>



This is https://example.com

Recieved Message: ,,_

attacked




How to fix?

“Check for origin before use’

<html>

</html>

<body bgcolor="white">
This is https://example.com
<hr>
<div id="messageDOM"></div>
<script>
window.addEventListener("message"”,respond);
function respond(message){
if(message.origin !==

n

https://example.com")

return;fj
var area=document.getElementById("messageDOM");
area.innerHTML="Recieved Message: "+message.data;
}
</script>
</body>



Hijacking Data from postMessage:

Developers should not only check the data origin before using but also specify trusted

origin before sending the data.

If sensitive data is sent to arbitrarily controllable window without origin check then

those data could be stolen.



Vulnerable Code

https://example.com/sendlogin.html

<html>
<body>
¢script>
window.opener.postMessage(
</script>
</body>
g/htmi 3|

Why on earth would someone code like this?



Exp I Oit? (8 O inspector {} StyleEditor () Console [ Debugger (7) Performance { Memory (5 Storag
M @ 7 Filter Output

{'username’:'secretadmin’, 'accesstoken':'dG90YWxseXN1Y3J1dHBhc3N3b3JkCg=="
» |

https://attacker.com/exploithtml

<html>
<body>
<script>
window.open( v b
window.addEventListener( ,logit);
function logit(message){
console.log(message.data)
:
</script>
</body>
</html>



How to uncover one myself?

Listen carefully! Yes listen for postmessages

Tools that might help you:

https://github.com/opnsec/postMessage-logger - Browser extenstion by opnsec



How to secure myself?

Send data only to trusted domain.
Avoid using * as target location

Double check before using regex with postmessage



XSleak

What are side channel attacks?

In computer security, a side-channel attack is any attack based on information gained
from the implementation of a computer system, rather than weaknesses in the
implemented algorithm itself.



SCA - Eavesdropping your conversation:

"Lamphone attack by Israeli’s Ben-Gurion University of the Negev and the
Weizmann Institute of Science.

snd*(t)

%;;J m

Eavesdropper




Back to XSLeak

Just like lamphone attack, xsleak simply exploit the fundamental browser and webpage
implementation just using Javascript.



How do we do it?

e Frame Count

e Cache and Error Events
e CSP Violation Events

e Media Size

e Redirects

e Request timing

And Lot..........

https://github.com/xsleaks/xsleaks



Real world Example:

Leaking Facebook user’s identity:

Description: Combination of browser and server behaviour for different users in
redirection can be escalated to leak their Identity.



Observations:

Server behaviour:

LIf a user visits https://facebook.com/<own_username>/archive?_fb_noscript=1 there
will be no redirection.

2, If the same user visits
https://facebook.com/<random_username>/archive?_fb_noscript=1 there will be a

redirection changing URL to https://facebook.com/<random_username>



Browser behaviour:

If a page continuously redirects over 20 times browsers will throw out error
stating "Too Many redirects"

B

This page isn't working

These both can be chained to find the no of redirects by the server and therefore
deanonymize the user cross-origin.



The ldea:

We know more than consecutive 20 redirects results in error. So lets make a webpage
that redirects itself 18 times and to the Facebook URL in the 19th time. If the page
loads without any error then it is not redirected else redirected. By knowing this we can
find if the user is authenticated as that specific username.



Check! How will you find if the page is loaded?

CORS with no-cors ! Yes.

You can use fetch to request any website even though your that website isn’t
configured for CORS.

no-cors — Prevents the method from being anything other than HEAD, GET or
POST, and the headers from being anything other than simple headers. If any
ServiceWorkers intercept these requests, they may not add or override any headers

except for those that are simple headers. In addition, JavaScript may not access any
properties of the resulting Response. This ensures that ServiceWorkers do not affect

the semantics of the Web and prevents security and privacy issues arising from leaking

data across domains.






Questions:

http://dc0471.org/discord



