
Client-Side Javascript
Vulnerabilities - Demystified

Agenda:
DOM XSS

PostMessage Misconfiguration

Parameter Pollution

XSLeak

Same Origin Policy:
Same Origin Policy is an important concept in the web application security model.

This policy determines the access to data in between web applications.

http://store.company.com/somreandom.html

Why does Client-side security matters?
Client Side vulnerability takes advantage of an authenticated session of a legitimate

user.

Having arbitrary Javascript execution lets attacker to do (almost) anything on behalf

of an authenticated user.

Example:

Modify Email/Password, steal your personal information and anything you can do

from your browser.

DOM XSS

What is DOM XSS?
DOM XSS vulnerabilities arises when Javascript takes data from attacker controllable

source and pass it to sink.

What are sinks ?

Sinks, on the other hand are the points in the flow of data at which the untrusted input

gets outputted on the page or executed by JavaScript within the page.

Example:
URL: https://example.com/welcome.html

URL: https://example.com/welcome.html?name=cat https://example.com/welcome.html?name=dog

What if we input valid HTML code as name?
https://example.com/welcome.html?name=

What about JS ?
https://example.com/welcome.html?name=

Similar Sinks:

Why did it happen and how can you fix?
SANITIZE the data before you use it !

PostMessage

Misconfiguration

What are PostMessage and why does it exist?

SOP restriction:

What could go wrong?
Case 1:

If you’re rendering the input data from postMessage without origin check, it could lead

to XSS

Case 2:

If you didn’t specify the target domain to send message, there are chances for it to be

stolen. Which could leak potentially sensitive information.

Getting XSS with postMessage
https://www.example.com/recieve.html

Harmless Usage
https://www.harmlesswebsite.com/sendmessage.html

Fire XSS again!
https://attacker.com/exploit.html

How to fix?
`Check for origin before use`

Hijacking Data from postMessage:
Developers should not only check the data origin before using but also specify trusted

origin before sending the data.

If sensitive data is sent to arbitrarily controllable window without origin check then

those data could be stolen.

Vulnerable Code

https://example.com/sendlogin.html

Why on earth would someone code like this?

Exploit?
https://attacker.com/exploit.html

How to uncover one myself?
Listen carefully! Yes listen for postmessages

Tools that might help you:

https://github.com/opnsec/postMessage-logger - Browser extenstion by opnsec

How to secure myself?
Send data only to trusted domain.

Avoid using * as target location

Double check before using regex with postmessage

XSLeak
What are side channel attacks?

In computer security, a side-channel attack is any attack based on information gained

from the implementation of a computer system, rather than weaknesses in the

implemented algorithm itself.

SCA - Eavesdropping your conversation:
`Lamphone attack` by Israeli’s Ben-Gurion University of the Negev and the

Weizmann Institute of Science.

Back to XSLeak
Just like lamphone attack, xsleak simply exploit the fundamental browser and webpage

implementation just using Javascript.

How do we do it?
● Frame Count

● Cache and Error Events

● CSP Violation Events

● Media Size

● Redirects

● Request timing

And Lot……….

https://github.com/xsleaks/xsleaks

Real world Example:
Leaking Facebook user’s identity:

Description: Combination of browser and server behaviour for different users in

redirection can be escalated to leak their Identity.

Observations:
Server behaviour:

1,If a user visits https://facebook.com/<own_username>/archive?_fb_noscript=1 there

will be no redirection.

2, ,If the same user visits

https://facebook.com/<random_username>/archive?_fb_noscript=1 there will be a

redirection changing URL to https://facebook.com/<random_username>

Browser behaviour:

If a page continuously redirects over 20 times browsers will throw out error

stating "Too Many redirects".

These both can be chained to find the no of redirects by the server and therefore

deanonymize the user cross-origin.

The Idea:
We know more than consecutive 20 redirects results in error. So lets make a webpage

that redirects itself 18 times and to the Facebook URL in the 19th time. If the page

loads without any error then it is not redirected else redirected. By knowing this we can

find if the user is authenticated as that specific username.

Check! How will you find if the page is loaded?
CORS with no-cors ! Yes.

You can use fetch to request any website even though your that website isn’t

configured for CORS.

Putting it all together!

Questions:

http://dc0471.org/discord

